Что готовит будущее для производителей компрессоров? Часть 1

В данной статье рассматриваются некоторые будущие перспективы развития систем холодоснабжения для проектировщиков и производителей компрессоров. Некоторые наиболее интересные концепции разъяснены подробнее и в частности описываются возможные пути их интеграции в существующие системы, рассказывается, как выбрать целевые подходящие применения и как убедить людей без технического образования в том, что это необходимо и дает результат. В некоторых случаях компрессор может решить проблему, появляющуюся в другой части системы; в других случаях решение проблемы конструирования компрессора может быть найдено путем изменений в другом месте системы.


Введение


Промышленное холодоснабжение покрывает широкий диапазон применения и типоразмеров систем. ООН в документе «Технические варианты систем охлаждения» определяет диапазон типоразмеров для промышленных систем по холодопроизводительности от 10 кВт до 10 МВт, при температуре кипения от минус 50оС до плюс 20оС, с дополнительным критерием, заключающимся в том, что выход из строя системы охлаждения подвергает опасности работу предприятия, которое обслуживается данной системой. Например, система кондиционирования воздуха офисного помещения может не быть основной для продолжения работы, но холодильная установка, обслуживающая центр обработки данных, является важной для обеспечения производственного процесса. Коммерческое холодоснабжение пересекается в некоторых моментах с промышленным, особенно в диапазоне температур кипения от минус 30оС до + 5оС и диапазоне холодопроизводительностей от 5 кВт до 500 кВт, например супермаркеты, минимаркеты и локальные магазины. Компрессоры, традиционно применяющиеся в данных сегментах рынка, относятся к поршневым, спиральным, винтовым с описанным объемом от примерно 1 м3/час до 10 000 м3/час. В большинстве своем они используют прямой привод, малого или среднего типоразмера при полугерметичной конструкции. Электродвигатель применяется 2-х, 4-х или 6-ти полюсный (2950 об/мин, 1450 об/мин или 975 об/мин при 50 Гц), но все более популярным становится применение привода с переменной скоростью вращения, что может быть реализовано установкой частотного преобразователя на существующий электродвигатель или использованием двигателя с постоянными магнитами. В качестве рабочих веществ обычно применяются галогенопроизводные углеводородов, с преобладанием углеводородов в системах малой производительности, диоксида углерода в системах малой и средней производительности и аммиака в системах средней и большой производительности.


Значительные усилия в области разработки компрессоров для холодоснабжения в последние 20 лет были направлены на переход от хлорсодержащих углеводородов. Это направление вынужденно отвлекало внимание от более радикальных разработок, несмотря на то, что существует большое количество новейших инновационных решений в области компрессоростроения, которые служат хорошим предзнаменованием для будущего. Например, Оросз (Orosz) и др. (2) описывают оригинальный ротационный компрессор на основе колеблющегося ролика, Тех (Teh) и Оои(Ooi) (3) показывают один из вариантов ротационного пластинчатого компрессора, где оболочка цилиндра вращается эксцентрично по отношению к ротору, создавая тем самым переменный объем, а Виссинк(Wissink) (4) применяет торсионный эффект для компрессора со свободными поршнями для улучшения эффективности. Другие исследователи применяют улучшения для более общепринятых технологий, например, маслозаполненный спиральный компрессор от Белл(Bell) и др.(5), применение двигателя на постоянных магнитах для компрессора с качающимся ротором от Секигуцхи(Sekiguchi) и др. (6) и применение водоохлаждаемого герметичного электродвигателя для поршневых аммиачных компрессоров от Бооне (Boone) (7) превосходят постепенное усовершенствование существующих конструкций.


Для последующих разработок необходимо, чтобы потребность в них была вызвана не только переходом от хлорсодержащих углеводородов. В сообщении правительства Великобритании «Будущее пищевой промышленности и сельского хозяйства», сделанного в рамках программы Foresight говорится о трех перекликающихся движущих силах для новых исследований. Это рост/миграция населения, энергопотребление и пищевая безопасность. К 2050 году население Земли достигнет 9,3 млрд. человек, 75% из которых будут проживать в городах (в соответствии с данными Institution of Mechanical Engineers) – это означает, что городское население значительно превысит общее население Земного шара в настоящее время, и более, чем в 2 раза превысит существующее население городов. Такое быстрое увеличение численности населения предъявит беспрецедентные требования к источникам энергопотребления и к пищевой цепи. Итоговые опасности включают неконтролируемые изменения климата, изменение стоимости электроэнергии и дефицит продуктов питания; даже если продуктов питания будет достаточно, но может не хватать их питательной ценности, продукты могут быть сосредоточенны не в том месте планеты, где они действительно необходимы или их стоимость будет неадекватна.


Преобразование этого обзора в список приоритетных направлений развития холодильной техники является нелегкой задачей. Пирсон (10) очерчивает несколько выводов. Переход от рабочих веществ с высоким потенциалом глобального потепления (GWP) должен достигаться без увеличения потребления энергии или воды. Инвестиционные решения должны приниматься на основе данных об эффективности в течение всего жизненного цикла, а не на меньших капитальных затратах, эксплуатация оборудования должна быть простой, особенно при максимальной нагрузке, и не требовать высококвалифицированного вмешательства.


Тенденции в холодоснабжении.


Парокомпрессионные холодильные установки составляют большую часть общего количества холодильных систем в мире, используя вариации цикла Перкинса, состоящего из процессов сжатия, конденсации, расширения и кипения. Роль компрессора заключается в поднятии давления сухого пара (обычно перегретого) от давления, при котором рабочее вещество кипит, отбирая теплоту от теплоносителя (воздух, жидкость и т. д.). Пары сжимаются до высокого давления, достаточного для обеспечения передачи теплоты в окружающую среду (или в какой-либо технологический процесс, который использует подводимую теплоту) и/или охлаждаются и конденсируются, переходя из парообразного состояния в жидкое, или, в некоторых случаях, охлаждаются, при этом оставаясь в парообразном состоянии (сверхкритические), например сверхкритичесские циклы СО2. Обычно рабочие вещества представляют собой химически стабильные соединения или смеси химических соединений, которые используются для получения свойств, наиболее подходящих для определенного режима работы. Большое число компрессоров используют в качестве смазки масло, которое применяется для некоторых дополнительных функций помимо смазывания движущихся частей в подшипниках, цилиндрах, пластинах, спиралях или роторах. Масло применяется для уплотнения компонентов, участвующих в процессе сжатия, и улучшения эффективности, оно также применяется в качестве гидравлической среды для приводных компонентов, таких как механизм регулирования производительности, оно «питает» уплотнение приводного вала, смазывая его и охлаждая, также масло применяется в качестве теплопередающего вещества в процессии охлаждения сжатых паров. Масло может смешиваться с хладагентом, что позволяет получить некоторые проблемы для компрессора и контура смазывания, но упрощает эксплуатацию испарителя, или не смешиваться, что позволяет получить более стабильные условия смазывания компрессора, но затрудняет возврат масла со стороны низкого давления системы. В некоторых сложных случаях, например высокотемпературных аммиачных тепловых насосах с полиальфаолефиновым или крекинговым минеральным маслом, масло может смешиваться с хладагентом в подшипниках и масляном контуре, но не смешиваться в испарителе – худший из обоих вариантов.


Последние разработки в области компрессоростроения включают различные улучшения в области эффективности. В поршневых компрессорах это достигается с помощью выбора материалов, конструкции клапанов и отделения области высоких температур от области низких как описал Бон (11). Для винтовых компрессоров наиболее распространенными являются разработки в области оптимизации профиля винтов и расположения порта экономайзера и порта для впрыска масла. Для обоих типов компрессоров эти улучшения применяются по нарастающей, что объясняется хорошей изученностью базовой конструкции. Другое направление исследований сосредоточено на увеличении максимальной скорости, уменьшении минимальной скорости и обеспечении работы компрессора во всем рабочем диапазоне без чрезмерного резонанса. Винтовые компрессоры, работающие при скорости вращения до 6 000 об/мин, и поршневые компрессоры, работающие при скоростях вращения до 3 000 об/мин, были недавно представлены в больших типоразмерах, чем ранее при тех же скоростях, доступность рентабельных инверторов больших типоразмеров обеспечило возможность достижения эффективной работы в режиме частичной нагрузки.


Центробежные компрессоры среднего типоразмера, сконструированные для работы с HFC-134a, были представлены около 10 лет назад Conry (12) и недавно их конструкция была изменена для работы с HFC-1234ze(E), что описано Пирсоном (13). Подобные компрессоры предлагаются в настоящее время несколькими производителями и выпускаются холодопроизводительностью от 200 кВт до 2 000 кВт при режиме радоты охладителя воды (чиллера). В этих компрессорах применяются магнитные подшипники или подшипники с газовой смазкой, что позволяет отказаться от применения масла, обычно они оснащаются электроникой, контролирующей скорость вращения вала, которая входит в состав поставки. Такое предложение позволяет осуществлять более широкий мониторинг и диагностику работы по сравнению с компрессорами более традиционных типов. Один производитель небольших поршневых компрессоров перенимает данный опыт и включает модуль диагностики в свои компрессоры, но все возможности данного комплекса еще не используется широко.


Термин «не как обычно в холодоснабжении» применяется для описания широкого ряда технологий, которые предлагаются в качестве альтернативы парокомпрессионным холодильным машинам. Они включают магнетокалорическое охлаждение, термоэлектрический (эффект Пельтье) и термоакустический эффект наряду с различными формами абсорбции и адсорбции. Кроме традиционных абсорбционных систем, применяемых в теплоиспользующих чиллерах и походных холодильниках, только одна из этих технологий применяется в основном направлении коммерческих продуктов – это эффект Пельтье, который применяется в охладителях напитков и малых портативных холодильниках. Абсорбция (где холодильный агент абсорбируется жидкостью и нагнетается до высокого давления) применялась на протяжении приблизительно столетия в промышленных системах. Адсорбция (где пары адсорбируются твердым материалом) стала популярной относительно недавно и используется не очень широко. По-видимому, она менее применима в холодильных установках большой холодопроизводительности, и возможно, поэтому менее привлекательна для производителей компрессоров, по крайней мере, в промышленном и коммерческом секторах. Термофизические эффекты, к сожалению, не применяются в промышленных масштабах за счет низкой внутренней эффективности и высоких капитальных затрат. Другие циклы, такие как циклы Стирлинга и Брайтона, предлагают возможности для производителей, но не желательны для применения в промышленных системах. В цикле Стирлинга нагрев и охлаждение проявляются на противоположных концах «машины», таким образом, требуется вторичный хладоноситель для охлаждения (отбора теплоты в морозильной или холодильной камере). Стоимость входящих в состав установки теплообменных аппаратов в промышленном масштабе в машине Стирлинга будет очень высокой; было бы более подходящим использовать теплообменные аппараты с машиной Стирлинга, которые были бы встроены в нее. Цикл Брайтона (также известный как цикл воздушного охлаждения) требует комбинации компрессора и детандера, часто изготавливаемого в виде турбоагрегата. Эти устройства потенциально дешевы в изготовлении, но требуют относительно дорогого и занимающего много места воздуха для воздушных теплообменников, чтобы достичь эффективности близкой к приемлемой, и наиболее применимы там, где источник и приемник теплоты работают при значительных изменениях температуры, что может быть достигнуто в противотоке воздушного потока. Это также сложно и дорого и не соответствует требованиям, предъявляемым к системам холодоснабжения, где температура продукта поддерживается как можно более неизменной.

Возможно все сказанное выше и не вызывает интерес у производителей промышленных компрессоров к технологиям «не как обычно в холодоснабжении». На самом деле, одна из последних разработок, иногда называемая гибридным циклом предлагает интригующую связь между этими двумя лагерями. Двухкомпонентный раствор, обычно включающий воду и аммиак, применяется в абсорбционной системе с генератором и десорбером, но пары на выходе из испарителя сжимаются обычным холодильным компрессором, в то время как слабый раствор подается к области высокого давления и смешивается с парами на выходе компрессора. Такая система привлекательна для тепловых насосов, так как позволяет достичь высоких температур в контуре приемника теплоты, но без высоких давлений как в цикле Перкинса для аммиачных тепловых насосов. Например, чтобы нагреть воду до температуры +90оС требуется давление нагнетания аммиака около 5 МПа, в то время как гибридный цикл позволяет работать при половине этого давления, что входит в рабочий диапазон стандартной установки. Недостатком гибридной компрессионно-абсорбционной установки является, как и в воздушном цикле, высокие изменения температуры в источнике и приемнике теплоты, таким образом, чтобы получить полное преимущество от этого цикла требуется необычная характеристика источника теплоты и дорогой противоточный испаритель.

Комментарии 0

Комментариев пока нет